Copied to
clipboard

G = C22⋊Dic14order 224 = 25·7

The semidirect product of C22 and Dic14 acting via Dic14/Dic7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic7.6D4, C221Dic14, C23.12D14, (C2×C14)⋊Q8, C2.6(D4×D7), C4⋊Dic72C2, (C2×C4).5D14, C71(C22⋊Q8), C14.4(C2×Q8), Dic7⋊C44C2, C14.16(C2×D4), C22⋊C4.1D7, (C2×Dic14)⋊2C2, (C2×C28).1C22, C2.6(C2×Dic14), C23.D7.2C2, C14.21(C4○D4), C2.6(D42D7), (C2×C14).19C23, (C22×C14).8C22, (C22×Dic7).3C2, (C2×Dic7).5C22, C22.39(C22×D7), (C7×C22⋊C4).1C2, SmallGroup(224,73)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C22⋊Dic14
C1C7C14C2×C14C2×Dic7C22×Dic7 — C22⋊Dic14
C7C2×C14 — C22⋊Dic14
C1C22C22⋊C4

Generators and relations for C22⋊Dic14
 G = < a,b,c,d | a2=b2=c28=1, d2=c14, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 262 in 74 conjugacy classes, 35 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, Q8, C23, C14, C14, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic7, Dic7, C28, C2×C14, C2×C14, C2×C14, C22⋊Q8, Dic14, C2×Dic7, C2×Dic7, C2×C28, C22×C14, Dic7⋊C4, C4⋊Dic7, C23.D7, C7×C22⋊C4, C2×Dic14, C22×Dic7, C22⋊Dic14
Quotients: C1, C2, C22, D4, Q8, C23, D7, C2×D4, C2×Q8, C4○D4, D14, C22⋊Q8, Dic14, C22×D7, C2×Dic14, D4×D7, D42D7, C22⋊Dic14

Smallest permutation representation of C22⋊Dic14
On 112 points
Generators in S112
(1 15)(2 83)(3 17)(4 57)(5 19)(6 59)(7 21)(8 61)(9 23)(10 63)(11 25)(12 65)(13 27)(14 67)(16 69)(18 71)(20 73)(22 75)(24 77)(26 79)(28 81)(29 43)(30 102)(31 45)(32 104)(33 47)(34 106)(35 49)(36 108)(37 51)(38 110)(39 53)(40 112)(41 55)(42 86)(44 88)(46 90)(48 92)(50 94)(52 96)(54 98)(56 100)(58 72)(60 74)(62 76)(64 78)(66 80)(68 82)(70 84)(85 99)(87 101)(89 103)(91 105)(93 107)(95 109)(97 111)
(1 68)(2 69)(3 70)(4 71)(5 72)(6 73)(7 74)(8 75)(9 76)(10 77)(11 78)(12 79)(13 80)(14 81)(15 82)(16 83)(17 84)(18 57)(19 58)(20 59)(21 60)(22 61)(23 62)(24 63)(25 64)(26 65)(27 66)(28 67)(29 87)(30 88)(31 89)(32 90)(33 91)(34 92)(35 93)(36 94)(37 95)(38 96)(39 97)(40 98)(41 99)(42 100)(43 101)(44 102)(45 103)(46 104)(47 105)(48 106)(49 107)(50 108)(51 109)(52 110)(53 111)(54 112)(55 85)(56 86)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 87 15 101)(2 86 16 100)(3 85 17 99)(4 112 18 98)(5 111 19 97)(6 110 20 96)(7 109 21 95)(8 108 22 94)(9 107 23 93)(10 106 24 92)(11 105 25 91)(12 104 26 90)(13 103 27 89)(14 102 28 88)(29 82 43 68)(30 81 44 67)(31 80 45 66)(32 79 46 65)(33 78 47 64)(34 77 48 63)(35 76 49 62)(36 75 50 61)(37 74 51 60)(38 73 52 59)(39 72 53 58)(40 71 54 57)(41 70 55 84)(42 69 56 83)

G:=sub<Sym(112)| (1,15)(2,83)(3,17)(4,57)(5,19)(6,59)(7,21)(8,61)(9,23)(10,63)(11,25)(12,65)(13,27)(14,67)(16,69)(18,71)(20,73)(22,75)(24,77)(26,79)(28,81)(29,43)(30,102)(31,45)(32,104)(33,47)(34,106)(35,49)(36,108)(37,51)(38,110)(39,53)(40,112)(41,55)(42,86)(44,88)(46,90)(48,92)(50,94)(52,96)(54,98)(56,100)(58,72)(60,74)(62,76)(64,78)(66,80)(68,82)(70,84)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,87)(30,88)(31,89)(32,90)(33,91)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,98)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,105)(48,106)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,85)(56,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,87,15,101)(2,86,16,100)(3,85,17,99)(4,112,18,98)(5,111,19,97)(6,110,20,96)(7,109,21,95)(8,108,22,94)(9,107,23,93)(10,106,24,92)(11,105,25,91)(12,104,26,90)(13,103,27,89)(14,102,28,88)(29,82,43,68)(30,81,44,67)(31,80,45,66)(32,79,46,65)(33,78,47,64)(34,77,48,63)(35,76,49,62)(36,75,50,61)(37,74,51,60)(38,73,52,59)(39,72,53,58)(40,71,54,57)(41,70,55,84)(42,69,56,83)>;

G:=Group( (1,15)(2,83)(3,17)(4,57)(5,19)(6,59)(7,21)(8,61)(9,23)(10,63)(11,25)(12,65)(13,27)(14,67)(16,69)(18,71)(20,73)(22,75)(24,77)(26,79)(28,81)(29,43)(30,102)(31,45)(32,104)(33,47)(34,106)(35,49)(36,108)(37,51)(38,110)(39,53)(40,112)(41,55)(42,86)(44,88)(46,90)(48,92)(50,94)(52,96)(54,98)(56,100)(58,72)(60,74)(62,76)(64,78)(66,80)(68,82)(70,84)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,87)(30,88)(31,89)(32,90)(33,91)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,98)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,105)(48,106)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,85)(56,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,87,15,101)(2,86,16,100)(3,85,17,99)(4,112,18,98)(5,111,19,97)(6,110,20,96)(7,109,21,95)(8,108,22,94)(9,107,23,93)(10,106,24,92)(11,105,25,91)(12,104,26,90)(13,103,27,89)(14,102,28,88)(29,82,43,68)(30,81,44,67)(31,80,45,66)(32,79,46,65)(33,78,47,64)(34,77,48,63)(35,76,49,62)(36,75,50,61)(37,74,51,60)(38,73,52,59)(39,72,53,58)(40,71,54,57)(41,70,55,84)(42,69,56,83) );

G=PermutationGroup([[(1,15),(2,83),(3,17),(4,57),(5,19),(6,59),(7,21),(8,61),(9,23),(10,63),(11,25),(12,65),(13,27),(14,67),(16,69),(18,71),(20,73),(22,75),(24,77),(26,79),(28,81),(29,43),(30,102),(31,45),(32,104),(33,47),(34,106),(35,49),(36,108),(37,51),(38,110),(39,53),(40,112),(41,55),(42,86),(44,88),(46,90),(48,92),(50,94),(52,96),(54,98),(56,100),(58,72),(60,74),(62,76),(64,78),(66,80),(68,82),(70,84),(85,99),(87,101),(89,103),(91,105),(93,107),(95,109),(97,111)], [(1,68),(2,69),(3,70),(4,71),(5,72),(6,73),(7,74),(8,75),(9,76),(10,77),(11,78),(12,79),(13,80),(14,81),(15,82),(16,83),(17,84),(18,57),(19,58),(20,59),(21,60),(22,61),(23,62),(24,63),(25,64),(26,65),(27,66),(28,67),(29,87),(30,88),(31,89),(32,90),(33,91),(34,92),(35,93),(36,94),(37,95),(38,96),(39,97),(40,98),(41,99),(42,100),(43,101),(44,102),(45,103),(46,104),(47,105),(48,106),(49,107),(50,108),(51,109),(52,110),(53,111),(54,112),(55,85),(56,86)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,87,15,101),(2,86,16,100),(3,85,17,99),(4,112,18,98),(5,111,19,97),(6,110,20,96),(7,109,21,95),(8,108,22,94),(9,107,23,93),(10,106,24,92),(11,105,25,91),(12,104,26,90),(13,103,27,89),(14,102,28,88),(29,82,43,68),(30,81,44,67),(31,80,45,66),(32,79,46,65),(33,78,47,64),(34,77,48,63),(35,76,49,62),(36,75,50,61),(37,74,51,60),(38,73,52,59),(39,72,53,58),(40,71,54,57),(41,70,55,84),(42,69,56,83)]])

C22⋊Dic14 is a maximal subgroup of
C232Dic14  C24.27D14  C24.31D14  C42.88D14  C42.90D14  C4210D14  C42.96D14  D4×Dic14  C42.102D14  D45Dic14  D46Dic14  C4212D14  C4217D14  C42.118D14  C24.56D14  C24.32D14  C24.33D14  C24.35D14  C14.682- 1+4  Dic1419D4  C14.352+ 1+4  C14.712- 1+4  C14.722- 1+4  C14.732- 1+4  C14.492+ 1+4  (Q8×Dic7)⋊C2  C14.752- 1+4  D7×C22⋊Q8  Dic1421D4  C14.512+ 1+4  C14.1182+ 1+4  C14.522+ 1+4  C14.792- 1+4  C4⋊C4.197D14  C14.802- 1+4  C14.602+ 1+4  C14.822- 1+4  C14.1222+ 1+4  C14.832- 1+4  C14.842- 1+4  C14.852- 1+4  C14.862- 1+4  C42.137D14  C42.139D14  C42.140D14  C42.141D14  Dic1410D4  C42.144D14  C42.145D14  C42.159D14  C42.160D14  C42.161D14  C42.162D14  C42.164D14  C42.165D14
C22⋊Dic14 is a maximal quotient of
(C2×C28)⋊Q8  C14.(C4×Q8)  C4⋊Dic78C4  C14.(C4×D4)  (C2×Dic7)⋊Q8  C2.(C28⋊Q8)  (C2×C4).Dic14  C14.(C4⋊Q8)  Dic7.D8  D4⋊Dic14  D4.Dic14  D4.2Dic14  Q8⋊Dic14  Dic7.Q16  Q8.Dic14  Q8.2Dic14  C24.44D14  C24.46D14  C23⋊Dic14  C24.6D14  C24.7D14  C24.47D14

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H7A7B7C14A···14I14J···14O28A···28L
order1222224444444477714···1414···1428···28
size111122441414141428282222···24···44···4

44 irreducible representations

dim1111111222222244
type++++++++-+++-+-
imageC1C2C2C2C2C2C2D4Q8D7C4○D4D14D14Dic14D4×D7D42D7
kernelC22⋊Dic14Dic7⋊C4C4⋊Dic7C23.D7C7×C22⋊C4C2×Dic14C22×Dic7Dic7C2×C14C22⋊C4C14C2×C4C23C22C2C2
# reps12111112232631233

Matrix representation of C22⋊Dic14 in GL6(𝔽29)

100000
010000
001000
0002800
0000280
0000028
,
100000
010000
0028000
0002800
000010
000001
,
3280000
2190000
000100
001000
000005
0000230
,
3280000
8260000
0028000
0002800
0000203
0000219

G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,2,0,0,0,0,28,19,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,23,0,0,0,0,5,0],[3,8,0,0,0,0,28,26,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,20,21,0,0,0,0,3,9] >;

C22⋊Dic14 in GAP, Magma, Sage, TeX

C_2^2\rtimes {\rm Dic}_{14}
% in TeX

G:=Group("C2^2:Dic14");
// GroupNames label

G:=SmallGroup(224,73);
// by ID

G=gap.SmallGroup(224,73);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,48,218,188,50,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^28=1,d^2=c^14,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽